Interestingness of association rules in data mining: Issues relevant to e-commerce
نویسندگان
چکیده
The ubiquitous low-cost connectivity synonymous with the internet has changed the competitive business environment by dissolving traditional sources of competitive advantage based on size, location and the like. In this level playing field, firms are forced to compete on the basis of knowledge. Data mining tools and techniques provide e-commerce applications with novel and significant knowledge. This knowledge can be leveraged to gain competitive advantage. However, the automated nature of data mining algorithms may result in a glut of patterns – the sheer numbers of which contribute to incomprehensibility. Importance of automated methods that address this immensity problem, particularly with respect to practical application of data mining results, cannot be overstated. We first examine different approaches to address this problem citing their applicability to e-commerce whenever appropriate. We then provide a detailed survey of one important approach, namely interestingness measure, and discuss its relevance in e-commerce applications such as personalization in recommender systems. Study of current literature brings out important issues that reveal many promising avenues for future research. We conclude by reiterating the importance of post-processing methods in data mining for effective and efficient deployment of e-commerce solutions.
منابع مشابه
An Efficient Algorithm for Mining Sequential Rules with Interestingness Measures
Mining sequential rules are an important problem in data mining research. It is commonly used for market decisions, management and behaviour analysis. In traditional association-rule mining, rule interestingness measures such as confidence are used for determining relevant knowledge. They can reduce the size of the search space and select useful or interesting rules from the set of the discover...
متن کاملNumeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملA Data Mining Approach to New Library Book Recommendations
In this paper, we propose a data mining approach to recommending new library books that have never been rated or borrowed by users. In our problem context, users are characterized by their demographic attributes, and concept hierarchies can be defined for some of these demographic attributes. Books are assigned to the base categories of a taxonomy. Our goal is therefore to identify the type of ...
متن کاملGeneralised interaction mining: probabilistic, statistical and vectorised methods in high dimensional or uncertain databases
Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, useful and ultimately understandable patterns in data. The core step of the KDD process is the application of Data Mining (DM) algorithms to e ciently nd interesting patterns in large databases. This thesis concerns itself with three inter-related themes: Generalised interaction and rule mining; the i...
متن کاملInterestingness Measures for Rare Association Rules and Periodic-Frequent Patterns
Data mining is the process of discovering significant and potentially useful knowledge in the form of patterns from the data. As a result, the notion of interestingness is very important for extracting useful knowledge patterns. Numerous interestingness measures have been discussed in the literature to assess the interestingness of a knowledge pattern. In this thesis, we focus on selecting a ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005